

phone:408.986.9838email:sales@acphotonics.comwebsite:www.acphotonics.com

Manually Tuned Variable Optical Attenuator

Key Features

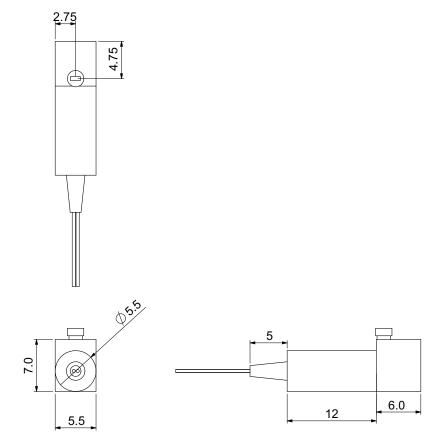
- Ultra Small Size
- Wide Wavelength Range
- Singlemode, PM and Multimode Fiber Versions
- High Attenuation Range
- High Resolution
- Designed to meel Telcordia Standar
- Low Cost

Applications

- Power Equalization and Control in Multi-Channel Optical Amplified networks
- Channel ON/OFF Switch
- CATV
- LAN
- Receiver Protection
- Optical Sensors

Performance Specifications

Parameter	Specifications		
Available Wavelength	Optimized at 633nm, 780nm, 830nm, 1310nm, 1550nm and 1625nm*		
Insertion Loss	≤ 1.0**dB		
PDL	≤ 0.1dB		
Temperature Dependent Loss (Typ.)	0.3dB		
Return Loss	\geq 50dB for singlemode and PM; \geq 30dB for multimode		
Attenuation Range	≥ 60dB***		
Attenuation Resolution (Typ.)	0.1dB		
Optical Power	≤ 1W		
Operating Temperature	-20 to +70°C		
Storage Temperature	-40 to +85°C		
Fiber Type	Singlemode, PM or 50/62.5um multimode		
Polarization Extinction Ratio (PM only)	≥ 20dB		


Note:

* Other wavelength also available upon request.

** 1.0 dB maximum applies to 1310 and 1550nm windows only. Higher insertion loss of up to 1.5dB may apply to 400-1200nm.

*** 80 dB is possible by special design.

Mechanical Dimensions

Ordering Information

MVOA						
	Option	Operating Wavelength	Range	Pigtail Style	Fiber Length	In/Out Connector
	SM = Singlemode M5 = 50/125 Multimode M6 = 62.5/125 Multimode PM = PM Fiber	13 = 1310 ± 50nm 15 = 1550 ± 50nm 35 = 1310/1550nm 83 = 830 ± 30nm 78 = 780 ± 30nm 63 = 630 ± 10nm	40 = 40dB 60 = 60dB 80 = 80dB	1 = Bare Fiber 2 = 900um Jacket	1 = 1.0m 2 = 2.0m	0 = None 1 = FC/APC 2 = FC/PC 3 = SC/APC 4 = SC/PC 5 = ST 6 = LC/UPC 7 = LC/APC